Random matrix ensembles with random interactions: Re- sults for EGUE(2)-SU(4)

نویسنده

  • Manan Vyas
چکیده

Abstract. We introduce in this paper embedded Gaussian unitary ensemble of random matrices, for m fermions in Ω number of single particle orbits, generated by random two-body interactions that are SU(4) scalar, called EGUE(2)-SU(4). Here the SU(4) algebra corresponds to Wigner’s supermultiplet SU(4) symmetry in nuclei. Formulation based on Wigner-Racah algebra of the embedding algebra U(4Ω) ⊃ U(Ω)⊗SU(4) allows for analytical treatment of this ensemble and using this analytical formulas are derived for the covariances in energy centroids and spectral variances. It is found that these covariances increase in magnitude as we go from EGUE(2) to EGUE(2)-s to EGUE(2)-SU(4) implying that symmetries may be responsible for chaos in finite interacting quantum systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SU(N) Wigner-Racah algebra for the matrix of second moments of embedded Gaussian unitary ensemble of random matrices

Recently Pluhar and Weidenmüller [Ann. Phys. (N.Y.) 297, 344 (2002)] showed that the eigenvectors of the matrix of second moments of embedded Gaussian unitary ensemble of random matrices generated by k-body interactions (EGUE(k)) for m fermions in N single particle states are SU(N) Wigner coefficients and derived also an expression for the eigenvalues. Going beyond this work, we will show that ...

متن کامل

Structure of wave functions in (1+2)-body random matrix ensembles.

Random matrix ensembles defined by a mean-field one body plus a chaos generating random two-body interaction [called embedded ensembles of (1+2)-body interactions] predict for wave functions, in the chaotic domain, an essentially one-parameter Gaussian forms for the energy dependence of the number of principal components (NPC) and the localization length l(H) (defined by information entropy), w...

متن کامل

SUNY-NTG-94/1 The

The spectrum of the QCD Dirac operator and chiral random matrix theory: the threefold way. Abstract We argue that the spectrum of the QCD Dirac operator near zero virtuality can be described by random matrix theory. As in the case of classical random matrix ensembles of Dyson we have three different cases: the chiral orthogonal ensemble (chGOE), the chiral unitary ensemble (chGUE) and the chira...

متن کامل

Wigner surmise for mixed symmetry classes in random matrix theory.

We consider the nearest-neighbor spacing distributions of mixed random matrix ensembles interpolating between different symmetry classes or between integrable and nonintegrable systems. We derive analytical formulas for the spacing distributions of 2×2 or 4×4 matrices and show numerically that they provide very good approximations for those of random matrices with large dimension. This generali...

متن کامل

Chiral Random Matrix Theory and Qcd

As was shown by Leutwyler and Smilga, the fact that chiral symmetry is broken and the existence of a effective finite volume partition function leads to an infinite number of sum rules for the eigenvalues of the Dirac operator in QCD. In this paper we argue these constraints, together with universality arguments from quantum chaos and universal conductance fluctuations, completely determine its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009